Sains Malaysiana 53(7)(2024): 1493-1508
http://doi.org/10.17576/jsm-2024-5307-02
Before It Is Too Late: Current Genetic Diversity Status of
the Exploited Sandfish Holothuria scabra (Echinodermata: Holothuroidea)
(Sebelum Terlambat: Status Semasa Kepelbagaian Genetik Holothuria scabra Gamat yang Dieksploitasi (Echinodermata: Holothuroidea)
KHOR WAIHO1,2,3,4,*,
HANAFIAH FAZHAN1,2,3,4, YUSHINTA FUJAYA5, ALEXANDER CHONG
SHU-CHIEN2,7,8, MUHAMMAD FATRATULLAH MUHSIN1,6, SURIYAN
TUNKIJJANUKIJ3 & NURUL HAYATI1
1Higher Institution Centre of
Excellence (HICoE), Institute of Tropical Aquaculture
and Fisheries, Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
2Centre for Chemical Biology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
3Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
4STU-UMT Joint Shellfish Research Laboratory, Shantou University,
Shantou, Guangdong, China
5Faculty of Marine Science and
Fishery, Hasanuddin University, Makassar, South
Sulawesi, Indonesia
6Faculty of Vocational, Hasanuddin University, Makassar, South Sulawesi, Indonesia
7School of Biological Sciences, Universiti Sains Malaysia, 11800
Minden, Penang, Malaysia
8Northland Aquaculture Centre,
National Institute of Water and Atmoshpheric Research, Ruakaka, New Zealand
Received: 21 November 2023/Accepted: 7 June 2024
Abstract
The sandfish Holothuria scabra is a well exploited and among the
highest-valued sea cucumber species. Owing to its economic importance and the
global expansion of sea cucumber fisheries that could lead to overfishing, the
aquaculture of H. scabra is increasing rapidly. To aid in resource management and providing sufficient
molecular information to inform the selection of sea cucumber broodstock to be incorporated into aquaculture, sufficient
knowledge on their genetic diversity is among the pre-requisite. Therefore,
this review synthesized together the currently available information on genetic
diversity of H. scabra in a global scale, thereby highlighting the lack of genetic baseline of H. scabra in
some populations. The implications and importance of the availability of
genetic baseline data to restocking and sea ranching, fisheries, and
aquaculture of H. scabra are discussed. Finally, future directions, including the development of
full genome, the use of other sequencing technologies, and the impact of
climate change onto H. scabra are provided.
Keywords: Genetic diversity; Holothuria; sandfish; sustainable
resource management
Abstrak
Holothuria scabra adalah sejenis spesies gamat yang dieksploitasi dengan meluas dan bernilai tinggi. Aktiviti akuakultur bagi H. scabra telah meningkat dengan pesat disebabkan nilai pasaran dan pengembangan global perikanan gamat yang boleh menyebabkan penangkapan secara berlebihan. Bagi membantu dalam pengurusan sumber dan penyediaan maklumat berkaitan molekul gamat yang lengkap untuk pemilihan stok induk gamat yang digunakan ke dalam penternakan akuakultur, pengetahuan yang mencukupi tentang kepelbagaian genetik mereka adalah antara prasyarat yang perlu dipenuhi. Oleh yang demikian, penulisan ini merupakan rumusan yang menyediakan maklumat terkumpul mengenai kepelbagaian genetik H. scabra dalam skala global, sekali gus menunjukkan kekurangan garis asas genetik H. scabra dalam sesetengah populasi. Ia turut mengetengahkan implikasi dan kepentingan ketersediaan data asas genetik kepada penternakan semula dan penternakan laut, perikanan dan akuakultur H. scabra. Kesimpulannya, perbincangan berkenaan hala tuju masa hadapan, termasuk pembangunan genom keseluruhan, penggunaan teknologi penjujukan lain dan kesan perubahan iklim ke atas H. scabradengan ini diberikan.
Kata kunci: Gamat; Holothuria; kepelbagaian genetik; pengurusan sumber mampan
REFERENCES
Akey,
J.M., Zhang, G., Zhang, K., Jin, L. & Shriver,
M.D. 2002. Interrogating a high-density SNP map for signatures of natural
selection. Genome Research 12:
1805-1814.
Altamirano,
J.P. & Rodriguez, J.C.J. 2022. Hatchery
Production of Sea Cucumbers (Sandfish Holothuria scabra). Tigbauan, Iloilo,
Philippines: Aquaculture Department, Southeast Asian Fisheries Development
Center.
Alejandro, M.B. 2019. Re-establishing
the sea cucumber resources in the Philippines: The Masinloc experience. Fish for the People 17(2): 35-41.
Allendorf,
F.W. 2017. Genetics and the conservation of natural populations: Allozymes to genomes. Molecular
Ecology 26(2): 420-430.
Aminin,
D.L., Menchinskaya, E.S., Pislyagin,
E.A., Silchenko, A.S., Avilov,
S.A. & Kalinin, C.I. 2016. Chapter 2 – Sea cucumber triterpene glycosides
as anticancer agents. Studies in Natural
Products Chemistry 49: 55-105.
An, H.S., Lee, J.W., Hong, S.W.,
Hong, H.N., Park, J.Y., Myeong, J.I. & An, C.M.
2013. Genetic differences between wild and hatchery populations of red sea
cucumber (Stichopus japonicus)
inferred from microsatellite markers: Implications for production and stocking
program design. Genes & Genomics 35: 709-717.
Appleyard, S.A. & Mather, P.B.
2001. Investigation into the mode of inheritance of allozyme and random amplified polymorphic DNA markers in tilapia Oreochromis mossambicus (Peters). Aquaculture Research 31(5): 435-445.
Ayala, F.J. & Powell, J.R. 1972. Allozymes as diagnostic characters of sibling species
of Drosophila. Proceeding of the National Academy of Sciences 69(5): 1094-1096.
Barker, J.S.F., Sene, F.d.M., East, P.D. & Pereira, M.A.Q.R. 1985. Allozyme and chromosomal polymorphism of Drosophila buzzatii in Brazil and Argentina. Genetica 76: 161-170.
Bell, J.D., Leber,
K.M., Blankenship, H.L., Loneragan, N.R. &
Masuda, R. 2008. A new era for restocking, stock enhancement and sea ranching
of coastal fisheries resources. Reviews
in Fisheries Science 16(1-3): 1-9.
Bolstad,
G.H., Karlsson, S., Hagen, I.J., Fiske, P., Urdal, K., Sægrov, H., Florø-Larsen, B., Sollien, V.P., Østborg, G., Diserud, O.H.,
Jensen, J.A. & Hindar, K. 2021. Introgression
from farmed escapees affects the full life cycle of wild Atlantic salmon. Science Advances 7(52): eabj3397.
Brown, K.T., Southgate, P.C., Loganimoce, E.M., Kaure, T., Stockwell, B. & Lal, M.M. 2024. Sandfish generations:
Loss of genetic diversity due to hatchery practices in the sea cucumber Holothuria (Metriatyla) scabra. Aquaculture 578: 740048.
Brown, K.T., Southgate, P.C., Hewavitharane, C.A. & Lal, M.M. 2022. Saving the sea
cucumbers: Using population genomic tools to inform fishery and conservation
management of the Fijian sandfish Holothuria (Metriatyla) scabra. PLoS ONE 17(9): e0274245.
Bugota,
V.J. & Rumisha, C. 2022. Low genetic diversity
and lack of genetic structure among populations of the sandfish Holothuria (Metriatyla) scabra on the Tanzanian coast. Marine Biology Research 18(9-10): 611-619.
Butcher, P.A., Glaubitz,
J.C. & Moran, G.F. 1999. Application for microsatellite markers in the
domestication conservation of forest tress. Forest Genetic Resources 27: 34-42.
Chieu,
H.D., Premachandra, H.K.A., Powell, D. & Knibb, W. 2023. Genome-wide SNP analyses reveal a
substantial gene flow and isolated-genetic structure of sea cucumber Holothuria leucospilota populations
in Western Central Pacific. Fisheries
Research 264: 106718.
Conand,
C. 2018. Tropical sea cucumber fisheries: Changes during the last decade. Marine Pollution Bulletin 133: 590-594.
Conand,
C., Claereboudt, M., Dissayanake,
C., Ebrahim, A., Fernando, S., Godvinden,
R., Lavitra, T., Léopold, M., Mmbaga,
T.K., Mulochau, T., Naaem,
S., Shea, S., Vaitilingon,
D., Yahya, S. & Friedman, K. 2022. Review of
fisheries and management of sea cucumbers in the Indian Ocean. WIO Journal of Marine Science 21(1):
125-148.
Conand,
C., Polidoro, B., Mercier, A., Gamboa,
R., Hamel, J.F. & Purcell, S. 2014. The IUCN red list assessment of aspidochirotid sea cucumbers and its implications. SPC Beche-de-mer Information Bulletin 34: 3-7.
Darya, M., Sajjadi,
M.M., Yousefzadi, M., Sourinejad,
I. & Zarei, M. 2020. Antifouling and
antibacterial activities of bioactive extracts from different organs of the sea
cucumber Holothuria leucospilota. Helgoland Marine Research 74: 4.
Degen,
B., Streiff, R. & Ziegenhagen,
B. 1999. Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci. Heredity 83: 597-603.
Diaz, B.G., Zucchi, M.I.,
Alves-Pereira, A., Almeida, C.P., Moraes, A.C.L., Vianna, S.A., Azevedo-Filho, J.
& Colombo, C.A. 2021. Genome-wide SNP analysis to assess the genetic
population structure and diversity of Acrocomia species. PLoS ONE 16(7): e0241025.
Duan,
B., Mu, S., Guan, Y., Li, S., Yu, Y., Liu, W., Li, Z., Ji, X. & Kang, X.
2022. Genetic diversity and population structure of swimming crab (Portunus trituberculatus)
in China seas determined by genotyping-by-sequencing (GBS). Aquaculture 555: 738233.
Fabinyi,
M., Gorospe, J.R., McClean, N. & Juinio-Menez, M.A. 2022. Evolving governance structures in
community-based sandfish mariculture and their
interactions with livehood outcomes: Evidence from
the Philippines. Frontiers in Marine
Science 9: 1025693.
FAO. 2023. Database of Farmed Types in Aquaculture. Food and Agriculture
Organization of the Unites Nations [Online]. Rome.
Floren,
A.S., Hayashizaki, K., Putchakarn,
S., Tuntiprapas, P. & Prathep,
A. 2021. A review of factors influencing the seagrass-sea cucumber association
in tropical seagrass meadows. Frontiers
in Marine Science 8: 696134.
Gandra, M., Assis, J., Martins, M.R.
& Abecasis, D. 2021. Reduced global genetic
differentiation of exploited marine fish species. Mol. Biol. Evol. 38(4): 1402-1412.
Gao, Q.F., Wang, Y., Dong, S., Sun,
Z. & Wang, F. 2011. Absorption of different food sources by sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea): evidence from
carbon stable isotope. Aquaculture 319(1-2): 272-276.
Gissi,
C., Iannelli, F. & Pesole,
G. 2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: 301-320.
González-Wangüemert,
M., Valente, S. & Aydin, M. 2015. Effects of fishery protection on biometry
and genetic structure of two target sea cucumber species from the Mediterranean
Sea. Hydrobiologia 743: 65-74.
Hair, C., Foale,
S., Daniels, N., Minimulu, P., Aini,
J. & Southgate, P.C. 2020. Social and economic challenges to community-based
sea cucumber mariculture development in New Ireland
Province, Papua New Guinea. Marine Policy 117: 103940.
Hair, C., Foale,
S., Kinch, J., Frijlink, S., Lindsay, D. &
Southgate, P.C. 2019. Socioeconomic impacts of a sea cucumber fishery in Papua
New Guinea: Is there an opportunity for mariculture? Ocean & Coastal Management 179:
104826.
Hair, C., Foale,
S., Kinch, J., Yaman, L. & Southgate, P.C. 2016.
Beyond boom, bust and ban: The sandfish (Holothuria scabra) fishery in the Tigak Islands, Papua New Guinea. Regional Studies in Marine Science 5: 69-79.
Hall, L.A. & Beissinger,
S.R. 2014. A practical toolbox for design and analysis of landscape genetics
studies. Landscape Ecology 29:
1487-1504.
Hamamoto,
K., Soliman, T., Poliseno,
A., Fernandez-Silva, I. & Reimer, J.D. 2021. Higher genetic diversity of
the common sea cucumber Holothuria (Halodeima) atra in
marine protected areas of the central and southern Ryukyu Island. Frontiers in Conservation Science 2:
736633.
Han, Q., Keesing,
J.K. & Liu, D. 2016. A review of sea cucumber aquaculture, ranching, and
stock enhancement in China. Reviews in
Fisheries Science & Aquaculture 24(4): 326-341.
Hasan, M.H. 2019. Destruction of sea
cucumber populations due to overfishing at Abu Ghosoun area, Red Sea. The Journal of Basic and
Applied Zoology 80: 5.
Houston, R.D., Bean, T., Macqueen,
D.J., Gundappa, M.K., Jin,
Y.H., Jenkins, T.L., Selly, S.L.C., Martin, S.A.M.,
Stevens, J.R., Santos, E.M., Davie, A. & Robledo, D. 2020. Harnessing
genomics to fast-track genetic improvement in aquaculture. Nature Reviews Genetics 21: 389-409.
He, W., Sun, H., Su, L., Zhou, D.,
Zhang, X., Shanggui, D. & Chen, Y. 2020.
Structure and anticoagulant activity of a sulfated fucan from the sea cucumber Acaudina leucoprocta. International Journal of Biological
Macromolecules 164(1): 87-94.
Iannucci,
A., Benazzo, A., Natali, C., Arida,
E.A., Zein, M.S.A., Jessop, T.S., Bertorelle,
G. & Ciofi, C. 2021. Population structure,
genomic diversity and demographic history of Komodo dragons inferred from
whole-genome sequencing. Molecular
Ecology 30(23): 6309-6324.
Jaskulak,
M., Rorat, A., Vandenbulcke,
F., Pauwels, M., Grzmil, P.
& Plytycz, B. 2022. Polymorphic microsatellite
markers demonstrate hybdridization and interspecific
gene flow between lumbricid earthworm species, Eisenia Andrei and E. fetida. PLoS ONE 17(2): e0262493.
Kang, J., Kim, Y., Kim, M., Park,
J., An, C., Kim, B., Jun, J.J. & Kim, S. 2011. Genetic differentiation
among populations and color variants of sea cucumbers (Stichopus japonicus) from Korea and China. International Journal of Biological
Sciences 7(3): 323-332.
Kinch, J., Purcell, S., Uthicke, S. & Friedman, K. 2008. Population status,
fisheries and trade of sea cucumbers in the Western Central Pacific. In Sea Cucumbers: A Global Review of Fisheries
and Trade: FAO Fisheries and Aquaculture Technical Paper, edited by ToralGranda, V., Lovatelli, A.
& Vasconcellos, M. Rome: FAO.
Klütsch,
C.F.C., Maduna, S.N., Polikarpova,
N., Forfang, K., Aspholm,
P.E., Nyman, T., Eiken, H.G., Amundsen, P. &
Hagen, S.B. 2019. Genetic changes caused by restocking and hydroelectric dams
in demographically bottlenecked brown trout in a transnational subarctic
riverine system. Ecology and Evolution 9(10):
6068-6081.
Ladoukakis,
E.D. & Zouros, E. 2017. Evolution and inheritance
of animal mitochondrial DNA: Rules and exceptions. Journal of Biological Research-Thessaloniki 24: 2.
Lee, S., Ford, A.K., Mangubhai, S., Wild, C. & Ferse,
S.C.A. 2018a. Effects of sandfish (Holothuria scabra) removal on shallow-water sediments. PeerJ 6(5865):
e4773.
Lee, S., Ford, A., Maangubhai, S., Wild, C. & Ferse,
S. 2018b. Length-weight relationship, movement rates, and in situ spawning observations of Holothuria scabra (sandfish) in Fiji. SPC Beche-de-mer Information Bulletin 38: 11-14.
Luo, H., Huang, G., Li, J., Yang,
Q., Zhu, J., Zhang, B., Feng, P., Zhang, Y. & Yang, X. 2022. De novo genome assembly and annotation
of Holothuria scabra(Jaeger,
1833) from nanopore sequencing reads. Genes & Genomics 44: 1487-1498.
Makhov,
I.A., Gorodilova, Y.Y.U. & Lukhtanov,
V.A. 2021. Sympatric occurrence of deeply diverged mitochondrial DNA lineages
in Siberian geometrid moths (Lepidoptera: Geometridae):
Cryptic speciation, mitochondrial introgression, secondary admixture of effect
of Wolbachia? Biological Journal of the Linnean Society 134(2): 341-365.
Martinez, A.S., Willoughby, J.R.
& Christie, M.R. 2018. Genetic diversity in fishes is influenced by habitat
type and life‐history variation. Ecology
and Evolution 8(23): 12022-12031.
Mercier, A., Battaglane,
S.C. & Hamel, J. 2000. Periodic movement, recruitment and size-related
distribution of the sea cucumber Holothuria scabra in Solomon Islands. Hydrobiologia 440: 81-100.
Moher, D., Shamseer,
L., Clarke, M., Chersi, D., Liberati,
A., Petticrew, M., Shekelle,
P., Stewart, L.A. & PRISMA-P Group. 2015. Preferred reporting items for
systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews 4: 1.
Mohsen, M., Ismail, S., Yuan, X.,
Yu, Z., Lin, C. & Yang, H. 2024. Sea cucumber physiological response to
abiotic stress: Emergent contaminants and climate change. Science of the Total Environment 928: 172208.
Navarro, P.G., Garcia-Sanz, S., Barrio, J.M. & Tuya,
F. 2013. Feeding and movement patterns of the sea cucumbers Holothuria sanctori. Marine Biology 160: 2957-2966.
Ninwichian,
P. & Klinbunga, S. 2020. Population genetics of
sandfish (Holothuria scabra) in
the Andaman Sea, Thailand inferred from 12S rDNA and microsatellite polymorphism. Regional Studies in Marine Science 35: 101189.
Nowland,
S.J., Southgate, P.C., Basiita, R.K. & Jerry,
D.R. 2017. Elucidation of fine-scale genetic structure of sandfish (Holothuria scabra)
populations in Papua New Guinea and northern Australia. Marine Freshwater Research 68(10): 1901-1911.
Nugroho,
A., Harahap, I.A., Ardiansyah,
A., Bayu, A., Rasyid, A., Murniasih, T., Setyastuti, A.
& Putra, M.Y. 2021. Antioxidant and antibacterial activities in 21 species
of Indonesian sea cucumbers. Journal of
Food Science and Technology 59: 239-248.
Pangestuti,
R. & Arifin, Z. 2018. Medicinal and health
benefit effects of functional sea cucumbers. Journal of Traditional and Complementary Medicine 8(3): 341-351.
Pérez-Ruzafa,
A., Gonzalez-Wanguemert, M., Lenfant,
P., Marcos, C. & Garcia-Charton, J.A. 2006.
Effects of fishing protection on the genetic structure of fish populations. Biological Conservation 129(2): 244-255.
Petit-Marty, N., Liu, M., Tan, I.Z.,
Chung, A., Terresa, B., Guijarro,
B., Ordines, F., Ramirez-Amaro, S., Massuti, E. & Schunter, C.
2022. Declining population sizes and loss of genetic diversity in commercial
fishes: A simple method for a first diagnostic. Frontiers in Marine Science 9: 872537.
Petrou,
E.L., Fuentes-Pardo, A.P., Rogers, L.A., Orobko, M., Tarpey, C., Jimenez-Hidalgo, I., Moss, M.L., Yang, D.,
Pitcher, T.J., Sandell, T., Lowry, D., Ruzzante, D.E. & Hauser, L. 2021. Functional genetic
diversity in an exploited marine species and its relevance to fisheries
management. Proceeding of the Royal
Society B 288(1945): 20202398.
Plough, L.V. 2016. Genetic load in
marine animals: A review. Current Zoology 62(6): 567-579.
Puigcerver,
M., Sanchez-Donoso, I., Bila,
C., Sarda-Palomera, F., Garcia-Galea,
E. & Rodriguez-Teijeiro, J.D. 2014. Decreased
fitness of restocked hybrid quails prevent fast admixture with wild European
quails. Biological Conservation 171: 74-81.
Purcell, S.W. 2012. Principles and
science of stocking marine areas with sea cucumbers. In Asia-Pacific Tropical
Sea Cucumber Aquaculture. ACIAR Proceedings, 136, edited by Hair, C.A., Pickering, T.D. &
Mills, D.J. Canberra: Australian Centre for International Agriculture Research.
Purcell, S.W. & Blockmans, B.F. 2009. Effective fluorochrome marking of juvenile sea cucumbers for sea ranching and restocking. Aquaculture 296(3-4): 263-270.
Purcell, S.W. & Kirby, D.S.
2006. Restocking the sea cucumber Holothuria scabra: Sizing no-take zones through individual-based
movement modelling. Fisheries Research 80(1): 53-61.
Purcell, S.W., Williamson, D.H.
& Ngaluafe, P. 2018. Chinese market prices of beche-de-mer: Implications for
fisheries and aquaculture. Marine Policy 91: 58-65.
Putman, A.I. & Carbone, I. 2014.
Challenges in analysis and interpretation of microsatellite data for population
genetic studies. Ecology and Evolution 4(22): 4399-4428.
Ravago-Gotanco,
R. & Kim, K.M. 2019. Regional genetic structure of sandfish Holothuria (Metriatyla) scabra populations across the Philippine archipelago. Fisheries Research 209: 143-155.
Riquet,
F., Fauvelot, C., Fey, P., Grulois,
D. & Leopard, M. 2022. Hatchery-produced sandfish (Holothuria scabra) show altered genetic diversity
in New Caledonia. Fisheries Research 252: 106343.
Roques, S., Berrebi,
P., Rochard, E. & Acolas,
M.L. 2018. Genetic monitoring for the successful re-stocking of a critically
endangered diadromous fish with low diversity. Biological Conservation 221:
91-102.
Ross, K., Cooper, N., Bidwell, J.R.
& Elder, J. 2002. Genetic diversity and metal tolerance of two marine
species: A comparison between population from contaminated and reference site. Marine Pollution Bulletin 44(7):
671-679.
Ru, R., Guo,
Y., Mao, J., Yu, Z., Huang, W., Cao, X., Hu, H., Meng,
M. & Yuan, L. 2022. Cancel cell inhibiting sea cucumber (Holothuria leucospilota)
protein as a novel anti-cancer drug. Nutrients 14(4): 786.
Scannella,
D., Bono, G., Lorenzo, M.D., Maio, F.D., Falsone, F., Gancitano, V., Garofalo, G., Geraci, M.L., Lauria,
V., Maria, M., Quattrocchi, F., Sardo,
G., Titone, A., Vitale, S., Fiorentino,
F. & Massi, D. 2022. How does climate change
affect a fishable resource? The case of the royal sea cucumber (Parastichopus regalis) in
the central Mediterranean Sea. Frontiers
in Marine Science 9: 934556.
Shangguan,
J. & Li, Z. 2017. Development of novel microsatellite markers for Holothurian scabra (Holothuriidae), Apostichopus japonicus(Stichopodidae)
and cross-species testing in other sea cucumbers. Journal of Oceanology and Limnology 36: 519-527.
Slater, M. & Chen, J. 2015. Sea
cucumber biology and ecology. In Echinoderm
Aquaculture, edited by Brown, N.P. & Eddy, S.D. New Jersey:
Willey-Blackwell.
Sonesson,
A.K., Hallerman, E., Humphries, F., Hilsdorf, A.W.S., Leskien, D., Rosendal, K., Bartley, D., Hu, X., Garcia-Gomez, R. & Mair, G.C. 2023. Sustainable management and improvement of
genetic resources for aquaculture. Journal
of the World Aquaculture Society 54(2): 364-396.
Song, H., Buhay,
J.E., Whiting, M.F. & Crandall, K.A. 2008. Many species in one: DNA
barcoding overestimates the number of species when nuclear mitochondrial
pseudogenes are coamplified. Proceeding of the National Academy of Sciences 105(36):
13486-13491.
Sun, G., Diaz, O., Salomon, B. &
Von Bothmer, R. 1998. Microsatellite variation and
its comparison with allozyme and RAPD variation in Elymus fibrosus (Schrenk) Tzvel. (Poaceae). Hereditas 129(3):
257-282.
Thomson, A.I., Archer, F.I.,
Coleman, M.A., Gajardo, G., Goodall-Copestake, W.P., Hoban, S., Laikre,
L., Miller, A.D., O’Brien, D., Perez-Espona, S., Segelbacher, G., Serrao, E.A., Sjotun, K. & Stanley, M.S. 2021. Charting a course for
genetic diversity in the UN Decade of Ocean Science. Evolutionary Applications 14(6): 1497-1518.
Uthicke,
S. & Purcell, S. 2004. Preservation of genetic diversity in restocking of
the sea cucumber Holothuria scabra investigated by allozyme electrophoresis. Canadian Journal of Fisheries and Aquatic
Sciences 61(4): 519-528.
Utzeri,
V.J., Ribani, A., Bovo, S., Taurisano, V., Calassanzio,
M., Baldo, D. & Fontanesi,
L. 2020. Microscopic ossicle analyses and the
complete mitochondrial genome sequence of Holothuria (Roweothuria) polii (Echinodermata; Holothuroidea) provide new information to support the
phylogenetic positioning of this sea cucumber species. Marine Genomics 51: 100735.
Vøllestad,
L.A. 2017. Understanding brown trout population genetic structure: A
Northern-European perspective. In Brown
Trout: Biology, Ecology, and Management, edited by InLón-Cerviá,
J. & Sanz, N. Hoboken: Wiley.
Waiho,
K., Ikhwanuddin, M., Afiqah-Aleng,
N., Shu-Chien, A.C., Wang, Y., Ma, H. & Fazhan, H. 2022a. Transcriptomics in advancing portunid aquaculture: A systematic
review. Reviews in Aquaculture 14:
2064-2088.
Waiho,
K., Rozaimi, R., Poompuang,
S., Tunkijjanukij, S., Shu-Chien,
A.C., Wang, Y., Ikhwanuddin, M., Sukhavachana,
S. & Fazhan, H. 2022b. Population biology,
reproductive biology, fisheries, and future perspective to develop three-spot
swimming crab Portunus sanguinolentus as new aquaculture candidate: A review. Journal
of Fisheries and Environment 46(2): 116-135.
Wang, H., Yang, B., Wang, H. &
Xiao, H. 2021. Impact of different numbers of microsatellite markers on
population genetic results using SLAF-seq data
for Rhododendron species. Scientific Reports 11: 8597.
Weitemier,
K., Penaluna, B.E., Hauck, L.L., Longway,
L.J., Garcia, T. & Cronn, R. 2021. Estimating the
genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Molecular Ecology 30(20): 4970-4990.
Xuereb,
A., Kimber, C.M., Curtis, J.M.R., Bernatchez, L. &
Fortin, M. 2018. Putatively adaptive genetic variation in the giant California
sea cucumber (Parastichopus californicus)
as revealed by environmental association analysis of restriction-site
associated DNA sequencing data. Molecular
Ecology 27(24): 5035-5048.
Yousefi,
S., Abbassi-Daloii, T., Kraaijenbrink,
T., Vermaat, M., Mei, H., van ’t Hof, P., van Iterson, M., Zhernakova, D.V., Claringbould, A., Franke, L., M ‘t Hart, L., Slieker, R.C., van der Heijden,
A., de Knijff, P., BIOS Consortium & A C ‘t Hoen, P. 2018. A SNP panel for identification of DNA and
RNA specimens. BMC Genomics 19: 90.
Zamora, L.N., Yuan, X., Caton, A.G. & Slater, M.J. 2018. Role of
deposit-feeding sea cucumbers in integrated multitrophic aquaculture: Progress, problem, potential and future challenges. Review in Aquaculture 10(1): 57-74.
Zhao, Y., Dong, Y., Ge, Q., Cui, P.,
Sun, N. & Lin, S. 2021. Neuroprotective effects of NDEELNK from sea
cucumber ovum against scopolamine-induced PC12 cell damage through enhancing
energy metabolism and upregulation of the PKA/BDNF/NGF signaling pathway. Food & Function 12(17): 7676-7687.
Zheng, W., Zhou, L., Lin, L., Cai, Y., Sun, H., Zhao, L., Gao, N., Yin, R. & Zhao, J.
2019. Physicochemical characteristics and anticoagulant activities of the
polysaccharides from sea cucumber Pattalus mollis. Marine
Drugs 17(4): 198.
Zheng, Z., Li, M., Jiang, P., Sun,
N. & Lin, S. 2022. Peptides derived from sea cucumber accelerate cells
proliferation and migration for wound healing by promoting energy metabolism
and upregulating the ERK/AKT pathway. European
Journal of Pharmacology 921: 174885.
*Corresponding author; email:
waiho@umt.edu.my
|